Friday, November 30, 2012

HEALTH - Mobile Phone Turns Enzyme Solution into a Gel


From Mark Crispin Miller 

ISIS Report 14/01/05

Mobile Phone Turns Enzyme Solution into A Gel

A highly reproducible non-thermal effect of mobile phones depends on interaction between protein and water. Dr. Mae-Wan Ho says it brings us closing to understanding the biophysics involved in how weak electromagnetic radiation can have biological effects.
Sources for this article are posted on ISIS members’ website. Details here

Serious brain damage unaccounted for

The most striking effect of exposure to the radio-frequency (RF) radiation from mobile phones is damage to the brain and brain cells of rats (see "Mobile phones & brain damage" SiS24), which were found at levels of exposure far below the current safety limits. After just two hours of such exposure, blood albumin leaked into the brain causing brain cells to die; and the effects lasted for at least 50 days after a single exposure. But no clear mechanism has emerged to explain this or other ‘non-thermal’ effects of electromagnetic fields (EMFs) even after a concerted, Europe-wide research programme (see "Confirmed: mobile phones break DNA and scramble genomes", this series).
I have suggested that phase changes in cell water triggered by EMFs may be involved in causing many biological effects, but there has been a complete lack of support for research in that area (see "Electromagnetic fields, leukaemia and DNA damage", SiS24).
Now, new research findings make that suggestion a great deal more plausible.

A ‘breakthrough’ in identifying mechanisms?

Researchers at the University of Rome in Italy led by Mario Barteri in the Chemistry Department report striking changes in a solution of an enzyme after exposure to RF radiation from mobile phones. This is the first time such a simple, reproducible, in vitro system has been devised to study the effects of EMFs.
The enzyme, acetylcholine esterase, involved in transmitting nerve signals from the brain to the skeletal muscle, has been purified and studied in great detail and commercial preparations are readily available. The researchers chose to study the acetylcholine esterase from the electric eel.
The enzyme was dissolved in a buffer solution in water and identical samples were exposed to RF radiations within the range of 915-1822 megahertz for 1 to 50 minutes, while the control (unexposed) was wrapped securely in aluminium foil to screen the RF radiations. A commercial cellular phone was used as the source of RF radiation at a specific absorption rate (SAR) of 0.51W/kg, with the mobile phone operating in the receiving mode.
After exposing the enzyme solution, the researchers used a range of physical measurement techniques to characterise the changes.
First they passed the solutions down a gel filtration column, which separates protein molecules by size. At short irradiation times between 1 to 10 min, no difference from the unexposed control was found; a single protein peak was identified, representing the enzyme in its usual ‘dimeric’ form consisting of two protein units associated together. However, after 20 min or more, a new peak was formed in addition to the old; the new peak representing the monomeric or dissociated form of the protein. This profile remained stable after one day at room temperature, showing that irreversible change had taken place in the solution.
Measurements on the rate constants of the enzyme activity similarly indicated that up to 10 min of RF radiation exposure had no effect, but after 20 min or more, the rate constants changed dramatically, which was consistent with previous findings from another laboratory reporting increase in the enzyme activity in mice after twenty minutes exposure to mobile phone radiation.
This change in the kinetic properties of the enzyme was apparently not accompanied by change in the three-dimensional shape (conformation) of the protein, at least as measured by circular dichroism (a technique for characterising the shape of molecules based on measuring the unequal absorption of right and left plane-polarized light).
Measurement by X-ray scattering, however, revealed a drastic change in the collective organisation of the protein in solution, which suggested that a phase of ‘hydrogel’ had separated out from the main solution. This hydrogel was made up of monomeric protein molecules associated with lots of water molecules to form a collective phase.
Finally, the researchers took a scanning electron micrograph of the control and the exposed sample, which showed up the marked difference. The native, unexposed sample appeared as a random suspension of enzyme molecules; whereas the irradiated sample appeared as a highly oriented sample with a regular periodic pattern.

RF radiation trigger interaction of enzyme protein with water

MORE

No comments:

Post a Comment